Unit Review: Kinematics and Dynamics

1.1 Kinematics

Be able to:

- convert units
- add and subtract vectors using diagrams, trigonometry, and the component method
- define all terms related to an object's motion (e.g. displacement, velocity, acceleration, etc.)
- analyze position-time graphs
- analyze velocity-time graphs
- convert one type of motion graph into the other
- solve problems using the kinematics equations
- solve relative motion problems using vector addition (including non-right angled problems)

1.2 Dynamics

Be able to:

- state and explain Newton's three laws of motion
- solve equilibrium problems using vector addition and Newton's $1^{\text {st }}$ law
- draw free body diagrams for
- objects on horizontal surfaces
- objects on inclined planes
- hanging mass problems
- solve dynamics problems involving friction (for all of the problem types listed above)

Problems

Use the following position-time graph to answer questions 1 to 3.

1. Describe the motion of the object from $t=0$ to $t=16 \mathrm{~s}$.
2. Determine the velocity of the object in each interval.
3. Determine the average velocity from $t=4 \mathrm{~s}$ to $t=12 \mathrm{~s}$.

Use the following velocity-time graph to answer questions 4 to 6.

4. Describe the motion of the object from $t=0$ to $t=16 \mathrm{~s}$.
5. Determine the acceleration of the object in each interval.
6. Determine the displacement of the object over the entire interval.
7. From the moment a $40 \mathrm{~m} / \mathrm{s}$ fastball touches the catcher's mitt until it is completely stopped takes 0.012 s . Calculate the average acceleration of the ball as it is being caught. $\left(-3333 . \overline{3} \mathrm{~m} / \mathrm{s}^{2}\right)$
8. A jet plane traveling at $+88 \mathrm{~m} / \mathrm{s}$ lands on a runway and comes to rest in 11 s .
a) Calculate its acceleration as it stops. $\left(-8.0 \mathrm{~m} / \mathrm{s}^{2}\right)$
b) Calculate the displacement it travels while braking. (484 m)
9. A bullet accelerates at $6.8 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}$ from rest as it travels the 0.80 m of the rifle barrel.
a) How long was the bullet in the barrel? $\left(4.85 \times 10^{-3} \mathrm{~s}\right)$
b) What velocity does the bullet have as it leaves the barrel? $(329.8 \mathrm{~m} / \mathrm{s})$
10. Police find skid marks 60 m long on a highway showing where a car made an emergency stop. Assuming that the acceleration was $-10 \mathrm{~m} / \mathrm{s}^{2}$ (about the maximum for dry pavement), how fast was the car going? Was the car exceeding the $80 \mathrm{~km} / \mathrm{h}$ speed limit? $(34.6 \mathrm{~m} / \mathrm{s}$ or $124.7 \mathrm{~km} / \mathrm{h}$)
11. A speeding motorist passes a stopped police car. At the moment he passes, the police car begins accelerating at a constant rate of $4.4 \mathrm{~m} / \mathrm{s}^{2}$. The motorist, unaware that he is being chased, continues at constant speed until the police car catches him $12 s$ later. How fast is the motorist going? ($26.4 \mathrm{~m} / \mathrm{s}$ or $95 \mathrm{~km} / \mathrm{h}$)
12. A camera is accidentally dropped from the edge of a cliff and 6.0 s later hits the bottom.
a) How fast was it going just before it hit? $(-58.8 \mathrm{~m} / \mathrm{s})$
b) How high is the cliff? $(176.4 \mathrm{~m})$
13. A rock is thrown vertically with a velocity of $20 \mathrm{~m} / \mathrm{s}$ from the edge of a bridge 42 m above a river. How long does the rock stay in the air? (5.61 s)
14. A 5.2 kg bowling ball is accelerated from rest to a velocity of $12 \mathrm{~m} / \mathrm{s}$ as the bowler covers 5.0 m of approach before releasing the ball. What force is exerted on the ball during this time? (74.9 N)
15. A high jumper, falling at $4.0 \mathrm{~m} / \mathrm{s}$, lands on a foam pit and comes to rest, compressing the pit 0.40 m . If the pit is able to exert a net force of 1200 N on the high jumper in breaking the fall, what is the jumper's mass? $(60 \mathrm{~kg})$
16. A brick layer applies a force of 100 N to each of two handles on a wheelbarrow. Its mass is 20 kg and it is loaded with 30 bricks, each of mass 1.5 kg . The handles of the wheelbarrow are inclined at 30° from the horizontal and the coefficient of friction is 0.20 . What is the acceleration of the wheelbarrow? $\left(0.40 \mathrm{~m} / \mathrm{s}^{2}\right)$
17. A box is given a push so that it slides across the floor. How far will it slide, given that the coefficient of friction is 0.30 and the push imparts an initial speed of $3.0 \mathrm{~m} / \mathrm{s} ?(1.53 \mathrm{~m})$
18. Find the acceleration and tension in the cord in the following systems.

b)

c)

d)

e)

f)

a) $5.58 \mathrm{~m} / \mathrm{s}^{2}[u p], T=12.3 \mathrm{~N}$
b) $2.26 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{ccw}], T=6.03 \mathrm{~N}$
c) $6.51 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{cw}], T=2.31 \mathrm{~N}$
d) $4.02 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{cw}], T=2.89 \mathrm{~N}$
e) $5.71 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{cw}], T=3.27 \mathrm{~N}$
f) $0.71 \mathrm{~m} / \mathrm{s}^{2}[c c w], T=3.15 \mathrm{~N}$

Use the following diagram to answer questions 19 and 20.

19. Find the acceleration and both tension forces, assuming no friction. ($1.4 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{cw}]$, $\left.T_{1}=22.4 \mathrm{~N}, T_{2}=33.6 \mathrm{~N}\right)$
20. If the coefficient of friction between the table and the 8 kg mass is 0.15 , find the acceleration and both tension forces. $\left(0.56 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{cw}], T_{1}=20.7 \mathrm{~N}, T_{2}=37 \mathrm{~N}\right)$

